Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(9): 17446-17498, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37920062

RESUMO

The movement of cells during (normal and abnormal) wound healing is the result of biomechanical interactions that combine cell responses with growth factors as well as cell-cell and cell-matrix interactions (adhesion and remodelling). It is known that cells can communicate and interact locally and non-locally with other cells inside the tissues through mechanical forces that act locally and at a distance, as well as through long non-conventional cell protrusions. In this study, we consider a non-local partial differential equation model for the interactions between fibroblasts, macrophages and the extracellular matrix (ECM) via a growth factor (TGF-$ \beta $) in the context of wound healing. For the non-local interactions, we consider two types of kernels (i.e., a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We investigate numerically the dynamics of this non-local model, as well as the dynamics of the localised versions of this model (i.e., those obtained when the cell perception radius decreases to 0). The results suggest the following: (ⅰ) local models explain normal wound healing and non-local models could also explain abnormal wound healing (although the results are parameter-dependent); (ⅱ) the models can explain two types of wound healing, i.e., by primary intention, when the wound margins come together from the side, and by secondary intention when the wound heals from the bottom up.


Assuntos
Matriz Extracelular , Cicatrização , Cicatrização/fisiologia , Comunicação Celular , Fator de Crescimento Transformador beta/metabolismo , Proliferação de Células
2.
Bull Math Biol ; 85(12): 117, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855947

RESUMO

Keloids are fibroproliferative disorders described by excessive growth of fibrotic tissue, which also invades adjacent areas (beyond the original wound borders). Since these disorders are specific to humans (no other animal species naturally develop keloid-like tissue), experimental in vivo/in vitro research has not led to significant advances in this field. One possible approach could be to combine in vitro human models with calibrated in silico mathematical approaches (i.e., models and simulations) to generate new testable biological hypotheses related to biological mechanisms and improved treatments. Because these combined approaches do not really exist for keloid disorders, in this brief review we start by summarising the biology of these disorders, then present various types of mathematical and computational approaches used for related disorders (i.e., wound healing and solid tumours), followed by a discussion of the very few mathematical and computational models published so far to study various inflammatory and mechanical aspects of keloids. We conclude this review by discussing some open problems and mathematical opportunities offered in the context of keloid disorders by such combined in vitro/in silico approaches, and the need for multi-disciplinary research to enable clinical progress.


Assuntos
Queloide , Neoplasias , Animais , Humanos , Queloide/etiologia , Queloide/patologia , Modelos Biológicos , Conceitos Matemáticos , Cicatrização
3.
Sci Rep ; 13(1): 12781, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550337

RESUMO

This contribution discusses surrogate models that emulate the solution field(s) in the entire simulation domain. The surrogate uses the most characteristic modes of the solution field(s), in combination with neural networks to emulate the coefficients of each mode. This type of surrogate is well known to rapidly emulate flow simulations, but rather new for simulations of elastoplastic solids. The surrogate avoids the iterative process of constructing and solving the linearized governing equations of rate-independent elastoplasticity, as necessary for direct numerical simulations or (hyper-)reduced-order-models. Instead, the new plastic variables are computed only once per increment, resulting in substantial time savings. The surrogate uses a recurrent neural network to treat the path dependency of rate-independent elastoplasticity within the neural network itself. Because only a few of these surrogates have been developed for elastoplastic simulations, their potential and limitations are not yet well studied. The aim of this contribution is to shed more light on their numerical capabilities in the context of elastoplasticity. Although more widely applicable, the investigation focuses on a representative volume element, because these surrogates have the ability to both emulate the macroscale stress-deformation relation (which drives the multiscale simulation), as well as to recover all microstructural quantities within each representative volume element.

4.
J Mech Behav Biomed Mater ; 141: 105779, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36940583

RESUMO

Human skin is a soft tissue behaving as an anisotropic material. The anisotropy emerges from the alignment of collagen fibers in the dermis, which causes the skin to exhibit greater stiffness in a certain direction, known as Langer's line. The importance of determining this anisotropy axis lies in assisting surgeons in making incisions that do not produce undesirable scars. In this paper, we introduce an open-source numerical framework, MARSAC (Multi-Axial Ring Suction for Anisotropy Characterization: https://github.com/aflahelouneg/MARSAC), adapted to a commercial device CutiScan CS 100® that applies a suction load on an annular section, causing a multi-axial stretch in the central zone, where in-plane displacements are captured by a camera. The presented framework receives inputs from a video file and converts them into displacement fields through Digital Image Correlation (DIC) technique. From the latter and based on an analytical model, the method assesses the anisotropic material parameters of human skin: Langer's line ϕ, and the elastic moduli E1 and E2 along the principal axes, providing that the Poisson's ratio is fixed. The pipeline was applied to a public data repository, https://search-data.ubfc.fr/femto/FR-18008901306731-2021-08-25_In-vivo-skin-anisotropy-dataset-for-a-young-man.html, containing 30 test series performed on a forearm of a Caucasian subject. As a result, the identified parameter averages, ϕˆ=40.9±8.2∘ and the anisotropy ratio E1ˆ/E2ˆ=3.14±1.60, were in accordance with the literature. The intra-subject analysis showed a reliable assessment of ϕ and E2. As skin anisotropy varies from site to site and from subject to subject, the novelty of the method consists in (i) an optimal utilization of CutiScan CS 100® probe to measure the Langer's line accurately and rapidly on small areas with a minimum diameter of 14mm, (ii) validation of an analytical model based on deformation ellipticity.


Assuntos
Cicatriz , Pele , Humanos , Anisotropia , Sucção , Estresse Mecânico
5.
J Mech Behav Biomed Mater ; 136: 105490, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228403

RESUMO

Being able to reposition tumors from prone imaging to supine surgery stances is key for bypassing current invasive marking used for conservative breast surgery. This study aims to demonstrate the feasibility of using Digital Volume Correlation (DVC) to measure the deformation of a female quarter thorax between two different body positioning when subjected to gravity. A segmented multipart mesh (bones, cartilage and tissue) was constructed and a three-step FE-based DVC procedure with heterogeneous elastic regularization was implemented. With the proposed framework, the large displacement field of a hard/soft breast sample was recovered with low registration residuals and small error between the measured and manually determined deformations of phase interfaces. The present study showed the capacity of FE-based DVC to faithfully capture large deformations of hard/soft tissues.


Assuntos
Neoplasias da Mama , Mama , Mastectomia Segmentar , Feminino , Humanos , Mama/diagnóstico por imagem , Decúbito Ventral , Decúbito Dorsal , Neoplasias da Mama/cirurgia
6.
Comput Methods Appl Mech Eng ; 256: 169-188, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23750055

RESUMO

We propose in this paper a reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No a priori knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture.

7.
Int J Multiscale Comput Eng ; 11(3): 253-287, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27069423

RESUMO

We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...